ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ ПО КУРСУ ХИМИИ 11 КЛАССА

Демонстрационный вариант

ЧАСТЬ.	A.	Тестовые	задания с	с выбо	ром отв	ета

1. Электронная конфигу	рация атома химиче	еского элемента	Э, высший
оксид которого соответс	ствует формуле 9_2O_2	3:	

	$4s^24p^4$	2)	$4s^{2}4$
3)	$4s^{2}4p^{3}$	4)	$4s^{2}4_{1}$

2. Соединения с ионной и ковалентной неполярной связью расположены в ряду:

1) HCl, N₂ 2) CaF₂, Cl₂ 3) P₄, H₂O 4) NH₃, S₈

3. Атомную, ионную и молекулярную кристаллическую решетку имеют соединения ряда:

- 1) алмаз, графит, оксид кремния
- 2) оксид углерода, оксид кремния, белый фосфор
- 3) красный фосфор, хлорид калия, азот (тв.)
- 4) оксид азота (II), алмаз, оксид фосфора (V)

4. Из $180 \ \Gamma 20\%$ раствора выпарили $20 \ \Gamma$ воды. Массовая доля полученного раствора равна:

1) 25,4%

2) 22,5%

3) 10,8%

4) 18,6 %

5. Окислителем в химической реакции $4HNO_3 \rightarrow 2H_2O + 4NO_2 + O_2$ является:

1) N^{+5}

2) N^{+4}

3) O^{0}

 O^{-2}

6. Химическое равновесие процесса $N_2 + O_2 \leftrightarrow 2NO$ - Q сместится вправо при:

1) понижении температуры

2) повышении давления

3) повышении концентрации NO

4) повышении температуры

7. В каком ряду элементы расположены в порядке увеличения их неметаллических свойств:

1) F, Cl, Br, I

2) P, S, Cl, F

3) I. Cl. F. O

4) F, Cl, S, Si

8. Согласно уравнению реакции $4P+5O_2=2P_2O_5+3010$ кДж при сжигании фосфора выделилось 150,5 кДж теплоты. Объем (н.у.) необходимого кислорода составил:

2,8л

2) 11,2 л

3) 4,48 л

4) 5,6 л

9. Сокращенное ионное уравнение $Ca^{2+} + CO_3^{2-} \rightarrow CaCO_3 \downarrow$ соответствует взаимодействию:

- 1) хлорида кальция и карбоната магния
- 2) сульфида кальция и углекислого газа
- 3) хлорида кальция и карбоната калия
- 4) нитрата кальция и углерода

10. Степень окисления хлора -1характерна для соединения:

1) CaCl₂

2) HClO₃

3) Cl₂

4) Cl₂O₅

ЧАСТЬ Б. Задания со свободным ответом.

11. На основании положения в ПСХЭ расположите элементы: углерод, азот, кремний, алюминий – в порядке увеличения восстановительных свойств. Объясните ответ.

12. Расставьте коэффициенты методом электронного баланса. NaCl + KMnO₄ + $H_2SO_4 \rightarrow MnSO_4 + K_2SO_4 + Na_2SO_4 + Cl_2 + H_2O$ Укажите окислитель и восстановитель, процессы окисления и восстановления.

- **13.** . Составьте уравнение химической реакции ионного обмена между азотной кислотой и гидроксидом цинка. Сделайте вывод об обратимости этой реакции.
- **14.** Определите объем водорода (н.у.), который выделится при реакции воды и лития массой 35 г и содержащего 8% примесей? Какая масса щелочи образуется при этом?
- **15.** . Вычислите массу воды, необходимую прилить к 220 г 25% нитрата калия, чтобы получить 11% раствор.

ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ ПО КУРСУ ХИМИИ 11 КЛАССА

Демонстрационный вариант

Шкала перевода тестовых баллов в отметку

Оценка	Баллы	% выполнения
2	0-17	0-49
3	18-25	51-70
4	26-31	71-89
5	32-35	91-100

Задание	1	2	3	4	5	6	7	8	9	10
Ответ	4	2	3	2	1	4	2	4	3	1
Баллы	2	2	2	2	2	2	2	2	2	2

Зада	Содержание ответа	Баллы
ние		
11	Восстановительные свойства элементов возрастают в периоде	1 балл
	справа налево, а в главных подгруппах сверху вниз,	
	следовательно, элементы располагаются в ряд:	
	азот \rightarrow углерод \rightarrow кремний \rightarrow алюминий	1 балл
12	10NaCl + 2KMnO ₄ +8H ₂ SO ₄ =2MnSO ₄ +K ₂ SO ₄ +5Na ₂ SO ₄ +8H ₂ O+5Cl ₂	1 балл
	Восстановитель $2Cl^{-1}$ - $2\bar{e} \rightarrow Cl_2$ процесс окисления	1 балл
	Окислитель $\mathrm{Mn}^{+7} + 5\bar{\mathrm{e}} \to \mathrm{Mn}^{+2}$ процесс восстановления	1 балл
13	$Zn(OH)_2 + 2HNO_3 = Zn(NO_3)_2 + 2H_2O$	1 балл
	$Zn(OH)_2 + 2H^+ + 2NO_3^{1-} = Zn^{2+} 2NO_3^- + 2H_2O$	
	$Zn(OH)_2 + 2H^+ = Zn^{2+} + 2H_2O$	1 балл
	Реакция необратима, т.к. происходит связывание ионов с	
	образованием слабого электролита - воды	1 балл
14	1) Определены масса и количество вещества чистого лития	1 балл
	$m(Lil_{uhctoro}) = 35 \Gamma \cdot 0.92 = 32.2\Gamma$	
	$n (Li_{\text{чистого}}) = 32,2 \ \Gamma: 7 \Gamma / \text{моль} = 4,6 \ \text{моль}$	

	0.0	
	2) Составлено уравнение реакции	
	$2Li + 2 H_2O = 2LiOH + H_2\uparrow$	1 балл
	3) Определено количество вещества и объем водорода	
	$n(H_2) = n (Li_{\text{чистого}}):2=2$,3 моль	1 балл
	$V(H_2)$ =2,3 моль ·22,4 л/моль= 51,52 л	
	4)) Определено количество вещества и масса щелочи	
	$n(LiOH) = n (Li_{чистого}) = 4,6 моль$	1 балл
	m(LiOH) = 4,6 моль · 24 г/моль = 110,4 г	
15	1) Определена массы соли в исходном растворе	1 балл
	m_1 = 220 ·0,25=55 г m_2 = 150 ·0.15=22,5 г	
	2) сделан расчет массы раствора, содержащего 55 г соли и	1 балл
	массовой долей 11%	
	$m_{(pactropa)} = 55:0,11 = 500 \Gamma$	
	3) Определена масса воды, которую необходимо добавить в	1 балл
	раствор	
	$m(H_2O) = 500 - 220 = 280 \ \Gamma$	
	Итого	15 балл